2024-11-13
ArkStream Capital赛道研究报告:AI Agent能否成为Web3 AI的救命稻草?
ArkStream Capital赛道研究报告:AI Agent能否成为Web3 AI的救命稻草?
基本介绍
在介绍 AI Agent 之前,为了让读者更好理解其定义和模型本身的区别,我们通过一个实际场景来做举例:假设你正在规划一次旅行。传统的大型语言模型提供目的地信息和旅行建议。检索增强生成技术则能提供更丰富、具体的目的地内容。而 AI Agent 就像是钢铁侠电影中的贾维斯,能理解需求,还能根据你的一句话主动搜索航班和酒店,执行预订操作,将行程添加到日历中。
目前行业内普遍对 AI Agent 的定义是指,能够感知环境并做出相应行动的智能系统,通过传感器获取环境信息,经过处理后通过执行器对环境产生影响(Stuart Russell & Peter Norvig, 2020)。我们认为,AI Agent 就是集合了 LLM、RAG、记忆、任务规划和工具使用能力的助手。它不仅能够单纯的信息提供,还能够规划、分解任务,并真正地执行。
根据这一定义和特性,我们可以发现 AI Agent 早已融入我们的生活,在不同的场景中得到应用,例如 AlphaGo、Siri、特斯拉的 L 5 级别以上的自动驾驶等都可被视为 AI Agent 的实例。这些系统共同的特质就是都能感知外界用户输入,并据此做出相应对现实环境产生影响。
以 ChatGPT 为例进行概念厘清,我们应当明确指出 Transformer 是构成 AI 模型的技术架构,GPT 是基于此架构发展起来的模型系列,而 GPT-1、GPT-4、GPT-4 o 分别代表了模型在不同发展阶段的版本。ChatGP 则 T 作为基于 GPT 模型进化而来的 AI Agent。
技术成熟度的影响:基础建设类项目之所以占据主导地位,首先得益于其技术成熟度。这些项目通常建立在经过时间检验的技术和框架之上,从而降低了开发难度和风险。相当于 AI 领域的“铲子”,为 AI Agent 的开发和应用提供了坚实的基础。
市场需求的推动:另一个关键因素是市场需求。与消费者市场相比,企业市场对 AI 技术的需求更为迫切,特别是在寻求提升运营效率和降低成本的解决方案方面。同时对于开发者而言,来自企业的现金流相对稳定,有利于他们开发后续项目。
应用场景的限制:与此同时,我们注意到内容生成类 AI 在 B 端市场的应用场景相对有限。由于其产出的不稳定性,企业更倾向于那些能够稳定提高生产力的应用。这导致了内容生成类 AI 在项目库中所占比例较小。
这一趋势反映了技术成熟度、市场需求和应用场景的实际考量。随着 AI 技术的不断进步和市场需求的进一步明确,我们预期这一格局可能会有所调整,但基础建设类仍将是 AI Agent 发展的坚实基石。
产品介绍:Character.AI 提供基于人工智能的对话系统和虚拟角色创建工具。其平台允许用户创建、训练和与虚拟角色进行互动,这些角色能够进行自然语言对话并执行特定任务。
数据分析:Character.AI 在 5 月的访问量为 2.77 亿,平台拥有超过 350 万的日活跃用户,其中大部分用户年龄在 18 至 34 岁之间,显示出年轻化的用户群体特征。Character AI 在资本市场上表现出色,完成了 1.5 亿美元的融资,估值达到 10 亿美元,由a16z领投。
技术分析:Character AI 与谷歌母公司 Alphabet 签署了非独家使用其大型语言模型的许可协议,这表明 Character AI 采用的是自研技术。值得一提的是,公司的创始人 Noam Shazeer 和 Daniel De Freitas 曾参与开发谷歌的对话式语言模型 Llama。
Perplexity AI:
产品介绍:Perplexity 能够从互联网上抓取并提供详尽的答案。通过引用和参考链接确保了信息的可靠性和准确性,同时他会教育、引导用户进行追问和搜索关键词,满足了用户多样化查询需求。
数据分析:Perplexity 的月活跃用户数量已达到 1000 万,其移动和桌面应用程序的访问量在 2 月份实现了 8.6% 的增长,吸引了约 5000 万用户。在资本市场上,Perplexity AI 最近宣布获得 6270 万美元的融资,估值达到 10.4 亿美元,由 Daniel Gross 领投,参与者包括 Stan Druckenmiller 和 NVIDIA。
技术分析:Perplexity 使用的主要模型是经过微调的 GPT-3.5 ,以及基于开源大模型微调的两款大型模型:pplx-7 b-online 和 pplx-70 b-online。模型适合专业学术研究和垂直领域的查询,确保信息的真实度和可靠性。
Midjourney:
产品介绍:用户可以通过 Prompts 在 Midjourney 创建各种风格和主题的图像,覆盖从写实到抽象的广泛创作需求。平台还提供图像混合与编辑,允许用户进行图像叠加和风格迁移,平台的实时生成功能确保用户在几十秒到几分钟内就能得到生成的图像。
数据分析:平台已经拥有 1500 万注册用户,并且有 150 万至 250 万的活跃用户。同时,根据公开市场信息,Midjourney 没有拿投资机构的钱,依靠创始人 David 多次创业的信誉和资源,实现了自给自足的发展。
技术分析:Midjourney 采用的是他们自己的闭源模型,自 2022 年 8 月发布 Midjourney V4以来,该平台一直在使用基于扩散的生成式 AI 模型。据称,该模型的训练参数在 300 到 400 亿个,这一庞大的参数量为其生成图像的多样性和准确性提供了坚实的基础。
商业化困境
在体验了多个Web2的 AI Agent 后,我们观察到产品迭代的普遍路径:从初期专注于单一细化任务,到后期拓展能力以处理更复杂的多任务场景。这一趋势不仅体现了 AI Agent 在提升工作效率和创新能力方面的潜力,也预示着它们将在未来扮演更加关键的角色。通过对Web2中 125 个 AI Agent 项目的初步统计,我们发现项目主要集中在内容生成(如 Jasper AI)、开发工具(如 Replit),以及数量最多的 B 端服务(如 Cresta)。这一发现与我们的预期相悖,起初我们预期随着 AI 模型技术的日益成熟,C 端市场将迎来 AI Agent 的爆发式增长。然而经过分析我们意识到:C 端 AI Agent 的商业化之路远比预期的崎岖和复杂。
拿 Character.Ai 为例,一方面,Character.AI 拥有着最好的流量表现。但因为其商业模式单一,靠 9.9 USD 的订阅费,在面对少量的订阅收入与重度用户推理成本消耗之下,最终还是因流量变现困难和资金链问题被谷歌收购了整个团队。这一案例反映出,即使有这么好的流量和融资,C 端 AI Agent 应用在商业化过程中还是困难重重。反映出绝大多数产品仍未能达到替代或有效辅助人工的标准,导致了 C 端用户对目前产品的付费意愿并不强烈。在我们实际的研究调查中发现许多初创项目都遇到了 Character.ai 类似的问题,C 端 AI Agent 的发展并非一帆风顺,而是需要在技术成熟度、产品价值、以及商业模式创新上进行更深入的探索,才能实现其在 C 端市场的潜力和价值。
通过统计大部分 AI Agent 项目的估值,对比 OpenAI、xAI 等天花板项目估值还有接近 10-50 倍的空间。不可否认的是,C 端 Agent 应用天花板还是足够高的,证明其仍然是一个好的赛道。但综合以上分析,我们认为相较于 C 端,B 端市场可能是 AI Agent 的最终落脚点。企业通过构建平台,将 AI Agent 集成到垂直领域、CRM、办公 OA 等管理软件中,这不仅为企业带来运营效率的提升,也为 AI Agent 提供了更广阔的应用空间。因此,我们有理由相信 B 端服务会是在Web2传统互联网内 AI Agent 短期内发展的主要方向。
项目概览
根据前文分析,即便是获得顶级融资并拥有良好用户流量的 AI Agent 应用,也面临着商业变现的难题。接下来我们将深入分析当前 AI Agent 项目在Web3内的发展情况。通过对一系列代表性项目的评估—包括它们的技术创新、市场表现、用户反馈以及发展潜力,旨在挖掘出具有启发性的建议。下图为目前市场上已发代币且市值较高的几个代表性项目:
Web2的 AI Agent 龙头项目整理,来源:ArkStream 项目数据库
根据我们对Web3 AI Agent 市场的统计,其项目开发的类型同样呈现出明显的板块密集趋势。绝大部分的项目都被划分为基础建设类,同时较为缺少内容生成类的项目。大多项目都试图通过让用户提供分布式的数据、算力等,去解决项目方的模型训练需求。亦或者试图打造一站式平台,嵌入多种 AI Agent 的应用服务和工具。从开发工具到前段交互类应用、生成式应用等。而传统 AI Agent 行业目前主要局限于开源参数调整或套用现有模型构建应用,这种方式在企业和个人用户层面都未能形成显著的网络效应。
现状分析
我们认为现阶段这种现象可能由以下几个因素推动:
市场与技术不匹配:Web3和 AI Agent 的结合点目前相比传统市场并没有明显的优势,其真正的优点在于改善生产关系,通过去中心化的方式优化资源和协作。这可能导致一些交互类和生成类应用在技术和资金实力较强的传统竞争对手面前缺乏竞争力。
应用场景限制:在Web3环境中,可能并没有那么多实际的需求去生成图像、视频或文字等内容。相反,Web3的去中心化和分布式特性更多地被用来在传统 AI 领域内实现降本增效,而不是拓展新的应用场景。
这一现象的根源,我们认为可追溯至当前 AI 行业的发展状态及其未来方向。可能正是因为当前的 AI 技术仍处于初级,类似于工业革命早期的蒸汽机被电机取代的过渡期,尚未达到普及应用的电气化时代。
我们有理由相信,未来 AI 发展的趋势可能会遵循类似的路径。通用模型将逐渐固化,而微调模型则会呈现多样化发展。AI 应用将广泛分散到各个企业和个人用户中,重点将转移到模型间的互联和交互。而这一趋势与Web3的理念高度契合,正因为Web3以其可组合性和无需许可的特性而著称,这与分散化的模型微调理念不谋而合。开发者被允许更大的自由度,可以更自由地组合和调整各种模型。同时,去中心化特性在数据隐私保护、计算资源分配等方面也为模型训练带来了独特优势。
随着技术进步,特别是 LoRA(Low-Rank Adaptation)等新技术的出现,大幅降低了模型微调的成本和技术门槛。这使得开发特定场景的公开模型或满足用户个性化需求变得更加容易。Web3内的 AI Agent 项目能够充分利用这一技术进步,在模型训练和微调领域探索新颖的训练方法、创新的激励机制,以及模型共享和协作的新模式,这些在传统中心化系统中往往难以实现。
此外,Web3项目方在模型训练方面的集中也同样体现了其在 AI 整个生态中占据重要位置的战略考量。所以Web3行业内的 AI Agent 项目集中于模型训练领域,是技术发展趋势、市场需求和Web3行业优势的自然交汇。接下来我们会例举几个Web2&3 行业内的模型训练类项目并进行对比。
Myshell产品介绍:提供了一个全面的 AI Agent 平台,用户能够创建、分享、个性化的 AI 代理。这些 Agent 能够提供陪伴,也能辅助工作提高效率。平台涵盖了多样化的 AI 代理风格,包括二次元和传统风格,交互形式涵盖音频、视频和文字。MyShell 特别之处在于聚合了包括 GPT 4 o、GPT 4、Claude 在内的多种现有模型,为用户提供了传统付费 AI Agent 的高级体验。此外,平台引入了类似 FT bonding curve 的交易系统,激励创作者开发高价值的 AI 模型,同时让用户有机会投资并共享收益。
数据分析:MyShell 在融资方面最后一轮估值约 8000 万美元,Dragonfly 领投,而其他知名投资方如币安、Hashkey、Folius 等也参与其中。尽管没有具体的用户访问数据,但 MyShell 在社交媒体上拥有近 180 K 的 Twitter 粉丝,Discord 在线人数虽通常不超过粉丝总数的十分之一,却显示出项目拥有一批忠实的用户和开发者基础。
技术分析:MyShell 并不独立开发 AI 模型,而是作为一个集成平台,汇聚了 Claude、GPT-4、 4 o 等前沿模型,并且声称支持其他闭源模型。这种策略使得 MyShell 能够利用现有技术资源,为用户提供一个统一且先进的 AI 体验。
主观体验:MyShell 允许用户根据自己的需求自由创建和定制 AI 代理,无论是作为个人陪伴还是专业助手,均能适应音频、视频等多种场景。用户即使不使用 MyShell 的代理,也能以较低成本享受到集成的Web2付费模型。此外,平台结合了 FT 的经济概念,让用户不仅可以使用 AI 服务,还能投资他们看好的 AI 代理,通过 bonding curve 机制增加财富效应。
产品介绍:提供了一个全面的 AI Agent 平台,用户能够创建、分享、个性化的 AI 代理。这些 Agent 能够提供陪伴,也能辅助工作提高效率。平台涵盖了多样化的 AI 代理风格,包括二次元和传统风格,交互形式涵盖音频、视频和文字。MyShell 特别之处在于聚合了包括 GPT 4 o、GPT 4、Claude 在内的多种现有模型,为用户提供了传统付费 AI Agent 的高级体验。此外,平台引入了类似 FT bonding curve 的交易系统,激励创作者开发高价值的 AI 模型,同时让用户有机会投资并共享收益。
数据分析:MyShell 在融资方面最后一轮估值约 8000 万美元,Dragonfly 领投,而其他知名投资方如币安、Hashkey、Folius 等也参与其中。尽管没有具体的用户访问数据,但 MyShell 在社交媒体上拥有近 180 K 的 Twitter 粉丝,Discord 在线人数虽通常不超过粉丝总数的十分之一,却显示出项目拥有一批忠实的用户和开发者基础。
技术分析:MyShell 并不独立开发 AI 模型,而是作为一个集成平台,汇聚了 Claude、GPT-4、 4 o 等前沿模型,并且声称支持其他闭源模型。这种策略使得 MyShell 能够利用现有技术资源,为用户提供一个统一且先进的 AI 体验。
主观体验:MyShell 允许用户根据自己的需求自由创建和定制 AI 代理,无论是作为个人陪伴还是专业助手,均能适应音频、视频等多种场景。用户即使不使用 MyShell 的代理,也能以较低成本享受到集成的Web2付费模型。此外,平台结合了 FT 的经济概念,让用户不仅可以使用 AI 服务,还能投资他们看好的 AI 代理,通过 bonding curve 机制增加财富效应。
Delysium
产品介绍:Delysium 提供了一个以意图为中心的 AI Agent 网络,让 Agent 更好地配合给用户带来友好的Web3体验。目前,Delysium 已经推出了两个 AI Agent:Lucy 和 Jerry。Lucy 是一个联网的 AI Agent,愿景是能够提供工具类的辅助,例如查询 Top 10 持币地址等,但目前 Agent 执行链上意图的功能尚未开放,只能执行一些基础指令,如在生态内质押 AGI 或兑换成 USDT。Jerry 则类似于 Delysium 生态内的 GPT,主要负责回答生态内的问题,例如代币分配等。
数据分析: 2022 年首轮募资 400 W 美元,同年又宣布完成了 1000 万美元的战略融资。其代币 AGI,目前 FDV 1.3 亿美元左右。暂无最新用户数据,据 Delysium 官方的统计,截止 2023 年 6 月 Lucy 已积累了超过 140 万的独立钱包连接数。
Sleepless AI
产品介绍:结合了Web3和 AI Agent 技术的情感陪伴类游戏平台,提供虚拟伴侣游戏 HIM 和 HER,利用 AIGC 和 LLM 来让用户沉浸在和虚拟角色的互动中。用户在不断的对话过程中,可以修改角色的属性、服装等,其兼容的大语言模型确保了角色在每一次对话中迭代自己,变得更懂用户。
数据分析:项目共筹集 370 万美元,投资方包括 Binance Labs、Foresight Ventures 和 Folius Ventures,目前代币总市值达到 4 亿美元左右。推特关注者 116 K,根据官方统计注册预约数达 190 K,其活跃用户达 43 K。可以说其用户粘性还是挺强的。
技术分析:尽管官方并没有公开他们的产品是基于哪一块市面上的大语言模型,但是他们 Sleepless AI 为了确保用户在聊天过程中会感受到这个角色越来越了解自己,因此他们在设计 LLM 训练时,为每个角色单独训练一个模型,同时结合向量数据库以及性格参数系统让角色拥有记忆。
主观体验:Sleepless AI 通过 AI Boyfriend,AI Girlfriend,以 Free to Play 角度切入,并不是单单融入了对话机器人的聊天框。项目通过高成本的美工、持续迭代的语言模型、高质量完整的配音,以及一系列的功能例如闹钟、助眠、经期记录、学习陪伴等极大的增强了虚拟人的真实性。这样的情感价值是市面上其他应用感受不到的。此外,Sleepless AI 创造了一个更长期、平衡的内容付费机制,用户可以选择出售 NFT,而不陷入P2E或者 Ponzi 的困境,这个模型同时考虑到了玩家的收益和游戏体验。
资本投入和市场关注度:尽管目前Web3行业内 AI Agent 项目在 Listing 数量上不占优势,但它们在市场估值中占比接近 50% ,显示出资本市场对这一赛道的高度认可。随着更多的资本投入和市场关注度的提升,AI Agent 赛道出现更多高估值的项目是板上钉钉的事。
竞争格局和创新能力:Web3行业内 AI Agent 赛道的竞争格局尚未完全形成,目前在应用面的层级上来讲,还没有出现现象级且属于龙头类似 ChatGPT 的产品出现,这给新的项目方们很多成长和创新的空间。随着技术成熟,和项目之前的创新,赛道有望开发出更多具有竞争力的产品,推动整个赛道的估值提升。
重视代币经济和用户激励:Web3的意义在于重塑生产关系,让部署和训练 AI 模型这一原本中心化的进程可以更加去中心化,通过合理的代币经济设计和用户激励方案,让闲置算力或个人数据集集合再分配,再通过 ZKML 等解决方案保护数据隐私,可以进一步降低算力和数据成本,并让更多个人用户参与到 AI 行业的建设中。
综上所述,我们对 AI Agent 赛道持看好的态度。我们有理由相信,AI Agent 这个赛道中会出现多个估值超过 10 亿美金的项目。通过横向比较,AI Agent 的叙事足够性感,市场空间足够大。目前市场估值普遍偏低,考虑到 AI 技术的快速发展、市场需求的增长、资本的投入以及赛道内企业的创新潜力,未来,随着技术成熟和市场认可度的提升,这一赛道有望涌现多个估值 10 亿以上的项目。